
© 2025 Gengrui (Edward) Zhang

COEN6731 Distributed Software Systems

Week 4: Byzantine fault tolerance, PBFT, Bitcoin, Proof-of-Work,

Gengrui (Edward) Zhang, PhD

Web: gengruizhang.com

http://gengruizhang.com

© 2025 Gengrui (Edward) Zhang 2

Today’s outline
Byzantine fault tolerance (BFT)
PBFT
Bitcoin “consensus”
• Proof-of-Work
• Merkle tree

© 2025 Gengrui (Edward) Zhang

Recall: family of failures

3

Benign faults

• Crash, omission, timing, etc

S1 S2
<k, v>

Cli Cli

Read(k)

response: v

Read(k)

response: ∅

© 2025 Gengrui (Edward) Zhang

Recall: family of failures

4

Benign faults

• Crash, omission, timing, etc

Byzantine faults

• Arbitrary behaviour

S1 S2
<k, v>

Cli Cli

Read(k)

response: v

Read(k)

response: ∅

S1 S2
<k, v>

Cli Cli

Read(k)

response: ANYTHING

Read(k)

response: ∅

win

© 2025 Gengrui (Edward) Zhang

Byzantine faults
• Intuition: more redundancy

5

leader
P1

P2 P3

P4

1:v
1:v

1:v

© 2025 Gengrui (Edward) Zhang

Byzantine faults
• Intuition: more redundancy

6

leader
P1

P2 P3

P4

1:v
1:v

1:v

2:1:v

2:1:v

2 O
sevenzsays 5 said I

© 2025 Gengrui (Edward) Zhang

Byzantine faults
• Intuition: more redundancy

7

leader
P1

P2 P3

P4

1:v
1:v

1:v

2:1:v

2:1:v

3:1:u

3:1:w

I

Recall CFT
2ft

O f failures
f 1 n 3 roller

BFT
f 1 3ft 1 4 nodes

© 2025 Gengrui (Edward) Zhang

Byzantine faults
• Intuition: more redundancy

8

leader
P1

P2 P3

P4

1:v
1:v

1:v

2:1:v

2:1:v

3:1:u

3:1:w
4:1:v 4:1:v

P2 decides on majority:

P4 decides on majority:

iii is
V W 0 y
A

51 Sr

© 2025 Gengrui (Edward) Zhang

Byzantine faults
• Intuition: more redundancy

9

leader
P1

P2 P3

P4

1:w1:u
1:v

© 2025 Gengrui (Edward) Zhang

Byzantine faults
• Intuition: more redundancy

10

leader
P1

P2 P3

P4

1:w1:u

2:1:u

2:1:u
3:1:w

3:1:w
4:1:v 4:1:v

P2 decides on majority:

P4 decides on majority:
1:v

liveness

94safety
M W 0

U M W

O defect leader'sfailure s
replace it with new leaders 53

© 2025 Gengrui (Edward) Zhang

PBFT
• PBFT is the first practical approach for Byzantine fault tolerance  

• Lampson’s system design recommendation:

• Handle normal and worst case separately as a rule because the

requirements for the two are quite different. The normal case must be
fast. The worst case must make some progress

11

LAMPSON, B. W. Hints for computer system design.
SIGOPS Oper. Syst. Rev. 17 (1983).

I

normal case no failure

worst case
CFT RFI leaerfate
BFT leader is Byzantine

© 2025 Gengrui (Edward) Zhang

PBFT: System model
• Network assumption: synchronous network

• Failure model: Byzantine failure

• Faulty nodes may behave arbitrarily

• Assume independent node failures

• Make use of cryptographic technologies

• Public-key signatures

• Message authentication codes

• Allow for strong adversary that can coordinate faulty nodes, delay communication,
or delay correct nodes in order to cause the most damage to the replicated service

• Do assume that the adversary cannot delay correct nodes indefinitely

• Assume that the adversary nodes are computationally bound

12

it
Asymm

MACS symm

© 2025 Gengrui (Edward) Zhang

PBFT: Service properties

• Provide safety and liveness with no more than replicas are faulty

• Safety: no two nodes decide differently

• Does not reply on synchrony

⌊ n − 1
3 ⌋

13

n 3ft if
f

© 2025 Gengrui (Edward) Zhang

PBFT: Service properties

• Provide safety and liveness with no more than replicas are faulty

• Safety: no two nodes decide differently

• Does not reply on synchrony

• Liveness: nodes eventually decide

• Correct clients eventually hear back

• Rely on some synchrony

• does not grow faster than indefinitely

• is the time between the moment when a message is sent

for the first time ant the moment when it is received by is destination

⌊ n − 1
3 ⌋

delay(t) t
delay(t) t

14

servers offer

Su

s delay 0

delay it

© 2025 Gengrui (Edward) Zhang

PBFT: Workflow overview

15

• Replicas move through a succession of configurations called views

• In a view, one replica is the primary and others are backups
• Views are numbered consecutively

• p = v mod |R |

servers nodes processes

flien service

TiemodIRI 0 070 0

man

ii i
Sign 2 mad J

Sj mar 5

© 2025 Gengrui (Edward) Zhang

PBFT: Workflow overview

1. A client sends a request to invoke a service operation to the primary

2. The primary broadcasts the request to the backups

3. Replicas execute the request and send a reply to the client

4. The client waits for replies from different replicas with the same

result; this is the result of the operation
f + 1

16

• Replicas move through a succession of configurations called views

• In a view, one replica is the primary and others are backups
• Views are numbered consecutively

• p = v mod |R |

S

© 2025 Gengrui (Edward) Zhang

PBFT: Client

17

C

0

1

2

3

request pre-prepare prepare commit reply Client sends to primary⟨Request, o, t, c⟩σc

: state machine replication 
: timestamp  
: a client

o
t
c

FEE

¾ Fp
to

¾ 4 1 It replies

© 2025 Gengrui (Edward) Zhang

PBFT: Normal operation

18

C

0

1

2

3

request pre-prepare prepare commit reply

⟨⟨Pre-prepare, v, n, d⟩σp
, m⟩

⟨Prepare, v, n, d, i⟩σi

⟨Commit, v, n, D(m), i⟩σi

: view number 
: sequence number 
: client’s request message  
: digest

v
n
m
d m′ s

: replica IDi

acrequestiontCDo _It 1

IIII.ie i iiifxiE

have
received 1ft I

© 2025 Gengrui (Edward) Zhang

PBFT: Garbage collection and checkpoint
• To have safety, messages must be kept in a replica’s log until it knows that

the requests they concern have been executed by at least non-faulty
replicas and it can prove this to others in view changes

• If some replica misses messages that were discarded by all non-faulty
replicas, it will need to be brought up to date by transferring all or a
portion of the service state

f + 1

19

Need proofs that the state is correct: checkpoints

Question
How to make a checkpoint?  

Hint: we are in a consensus algorithm

sync up

© 2025 Gengrui (Edward) Zhang

PBFT: Garbage collection and checkpoint

• A replica produces a checkpoint by broadcasting

• is the sequence number of the last request whose execution is
reflected in the state and is the digest of the state

• Each replica collects checkpoint messages in its log until it has of
them for sequence number of with the same digest signed by different
replicas

• These messages are the proof of correctness for the checkpoint

• A checkpoint with a proof becomes stable and the replica discards all pre-

prepare, prepare, and commit messages with sequence number less than
or equal to from its log; it also discards all earlier checkpoints and
checkpoint messages

i ⟨Checkpoint, n, d, i⟩σi

n
d

2f + 1
n d

2f + 1

n
20

so at

© 2025 Gengrui (Edward) Zhang

PBFT: View change
• Let’s now discuss leader’s failure

• Recall the native leadership rotation

• p = v mod |R |

21

90

T
054

© 2025 Gengrui (Edward) Zhang

PBFT: View change
• Let’s now discuss leader’s failure

• Recall the native leadership rotation

• p = v mod |R |

22

Question
Why not use Raft’s leader

election approach? view 1
Ss
1 1 mods if S5 isByzantine
Imodo

054 LEFTActive leadershipcampaign

© 2025 Gengrui (Edward) Zhang

PBFT: View change
• Let’s now discuss leader’s failure

• Recall the native leadership rotation

• p = v mod |R |

23

• A backup starts a timer when it
receives a request and the timer is
not already running

• It stops the timer when it is no longer
waiting to execute the request, but
restarts it if at that point it is waiting
to execute some other request

1

backup1

11482

© 2025 Gengrui (Edward) Zhang

PBFT: View change
• If the timer of backup expires in view , the backup starts a view change to

move the system to

• It stops accepting messages and broadcasts a

• is the sequence number of the last stable checkpoint known to

• is a set of valid checkpoint messages providing correctness of

• is a containing a set for each that prepared at with a sequence

number higher than

• contains a valid pre-prepare message and matching, valid

prepare messages signed by different backups with the same view,
sequence number, and the digest of

i v
v + 1

⟨VC, v + 1,C, P, i⟩σi

n s i
C 2f + 1 s
P Pm m i

n
Pm 2f

m
24

view change

00

© 2025 Gengrui (Edward) Zhang

PBFT: New view
• When the primary of view receives valid view-change

messages for view from other replicas, it broadcasts a  

• is a set containing the valid VC messages received by the primary
plus the view-change message for the primary sent

• is a set of pre-prepare message

p v + 1 2f
v + 1

⟨New-View, v + 1,V, O⟩σp

V
v + 1

O

25

fÉf ti

© 2025 Gengrui (Edward) Zhang

Common ground in consensus we’ve seen so far

• All voting-based approaches

• Prerequisite of voting-based approaches?

26

I

of serves ganging ft
Quorum III

Other serversidentiy
permissioned

blockchain

permissinless

© 2025 Gengrui (Edward) Zhang 27

Today’s outline
Byzantine fault tolerance (BFT)
PBFT
Bitcoin “consensus”
• Proof-of-Work
• Merkle tree

© 2025 Gengrui (Edward) Zhang

Consider a competition in a classroom

28

Whoever solves a problem the
first gets to write down the
reward they will receive

Whenever a problem is solved,
everybody starts to solve the
next one

If a number is prime

© 2025 Gengrui (Edward) Zhang

A problem that is hard to solve but easy to verify

• Proof-of-Work

29

define difficulty as 4
while(1) :

nonce = generateRandomString()
result = hash(block, nonce)
if result has 4 (difficulty) leading 0s:

break

10

hashblocks no

btw for 8 18

© 2025 Gengrui (Edward) Zhang

Demo
• go run pow.go

30

01M M
blockchain

7

3D 7

© 2025 Gengrui (Edward) Zhang

Longest chain rule
• The longest valid chain (the one with the most accumulated work) is

considered the valid one

• Miners will always continue mining on top of the longest chain, and the

shorter chain will eventually be discarded

• The Longest Chain Rule ensures that the blockchain with the most work

behind it is considered the “truth” by the network.

31

© 2025 Gengrui (Edward) Zhang

Double-spending/ chain-forks

32

(a) Consensus finality violation 
resulting in a fork

(b) Eventually, one of the blocks must
be pruned by a conflict resolution rule

(e.g., Bitcoin’s longest chain rule)

© 2025 Gengrui (Edward) Zhang 33

Proof-of-Work Repli. StateM. / BFT based protocols

Node identity
management Open, entirely decentralized

Permissioned, nodes need to know IDs of
all other nodes

Consensus finality no yes

Throughput Limited (due to possible chain forks) Good (tens of thousands tps)

Scalability Excellent (like Bitcoin) Limited (?)

Latency
High latency

(due to multi-block confirmations)
Excellent

(effected by network latency)

Power consumption Poor (useless hash calculations) good

Network synchrony
assumptions Physical clock timestamps None for consensus safety

© 2025 Gengrui (Edward) Zhang

Performance vs. Scalability

34

© 2025 Gengrui (Edward) Zhang

Merkle tree
• A Merkle tree is a binary tree where:

• Leaf Nodes contain the cryptographic hash of data blocks

• Non-Leaf Nodes contain the hash of their two child nodes

• The Root Node (Merkle Root) is the final hash that represents the entire

dataset

35

© 2025 Gengrui (Edward) Zhang

Merkle tree: example

36

TX 1 TX 2 TX 3 TX 4

H1 H2 H3 H4
H1 is the
hash of Tx1

H12 H34

H1234

H12 is the hash
of H1 and H2

Verify if TX4 is in
this blockchain

only need

to hash
one monlock

gland

© 2025 Gengrui (Edward) Zhang

Smart contracts
• Smart contracts: a self-executing program stored on a blockchain that

automatically enforces and executes the terms of an agreement when
predefined conditions are met

• Smart contracts eliminate the need for intermediariesAutomation – They run
automatically when conditions are satisfied.

• Immutability – Once deployed on a blockchain, they cannot be altered.

• Transparency – Contract code and execution results are visible on the

blockchain

• Trustlessness – No need for third-party involvement (e.g., banks or

lawyers)

• Security – Cryptographic mechanisms ensure integrity and prevent

tampering
37

© 2025 Gengrui (Edward) Zhang

Some buzz words: blockchain-as-a-service
(BaaS)

• Cloud-based solutions to build, host and use their own blockchain apps,
smart contracts and functions on the blockchain infrastructure

• BaaS makes blockchain capabilities more accessible and usable

• It can help businesses streamline processes, reduce costs, and prove

authenticity

• It can help businesses integrate blockchain capabilities into their

applications

• Not really happening yet

38

© 2025 Gengrui (Edward) Zhang 39

Worksheet

