
Redundant Byzantine Fault
Tolerance - RBFT

Presented By:
Arefe Emrani(40259157)

Mohamadali Sadeghi(40258780)

1

M A R C H 2 6 T H , 2 0 2 5

P I E R R E - L O U I S A U B L I N , S O N I A B E N M O K H T A R , V I V I E N Q U E M A

Agenda

1. Background and Motivation
2. System Model
3. Analysis of existing robust BFT protocols

(Prime, Aardvark, Spinning)
4. RBFT overview
5. RBFT detailed protocol steps
6. RBFT monitoring mechanism and Protocol instance change
7. Implementation
8. Performance Evaluation
9. Critical Analysis
10. Conclusion

2

Background and Motivation

3

Challenges in Existing BFT protocols:
• degrade significantly (at least 78%) when faults occur.

• Smartly malicious primaries can degrade performance
before being detected.

Maximum
Throughput
Degradation

Prime Aardvark Spinning

%78 %87 %99

➢ How can we build a BFT protocol that remains robust under faults?

➢ Can we avoid reliance on a single primary to prevent performance bottlenecks?

Background and Motivation

4

Proposed Solution - RBFT

✓ Minimizes Performance Degradation: Only 3% degradation under fault and
similar performance in fault-free scenarios.

✓ Ensures Fairness: Monitors request latency to fairly process client requests.

✓ Improves Fault Tolerance: Does not rely on a single primary.

Client 1

Node 0 Node 1 Node 2 Node 3

Primary Replica Replica Replica

Replica Primary Replica Replica

Master Instance

Backup Instance

…

System Model

5

Assumptions:
❖ Faulty node is f = (N−1)/3 -> lower bound.

❖ A compromised process means whole machine is compromised.

❖ Faulty nodes and clients can collude to attack but cryptographic
techniques (signatures, MACs, and hashing) remain secure.

❖ The network is Semi-Synchronous

❖ It addresses open-loop systems (no need to wait for a reply)

Client Server

Request 1

Request 2

Request 3

Open-loop System

Client Server
Request 1

Reply 1

Close-loop System

Request 2

ANALYSIS OF EXISTING ROBUST BFT PROTOCOLS

6

1.Prime
❖ Requests be sent to any replica.
❖ Replicas exchange requests and monitor primary.
❖ Replica be changed when observe faulty behavior.
❖ Primary send ordering messages at a defined frequency

calculated based on:
❖ Round-trip time (RTT) between replicas.
❖ Request execution time.
❖ Network variability factor.

Weakness of Prime
➢ The protocol relies on accurate network monitoring.
➢ Malicious primary colludes with a client to artificially increase RTT.

➢ This increases the allowed delay for sending messages.
➢ Primary can now delay ordering messages without detection.

➢ A faulty client sends heavier requests
Increases monitored RTT, allowing the primary to delay orders.

Client 1

Primary

Req 1

Faulty client

Replica 1

Replica 3

Replica 2

Client 3

Maximum degradation Throughput : 78%.

Heavy Req

Req 3

ANALYSIS OF EXISTING ROBUST BFT PROTOCOLS

7

2.Aardvark
❖ Based on PBFT but adds frequent primary changes.
❖ Primary change occurs when:

❖ Throughput falls below 90% of the average from the
last N views.

❖ Heartbeat timer expires before next ordering
message arrives.

❖ Uses separate NICs for clients and replicas to prevent
slowdowns.

Weakness of Aardvark
➢ Malicious primary delays requests strategically during

low-traffic periods.
➢ When load increases suddenly, system fails to detect

delays quickly.

Client 1

PrimaryReq 1

Replica 1 Replica 3Replica 2

Client 3

Under static load, throughput remains 76% of normal
Under dynamic load, throughput can degrade to 87%

Req 3

Heartbeat timer

View change trigger

Client 1

Req 2

Heartbeat timerHeartbeat timer

ANALYSIS OF EXISTING ROBUST BFT PROTOCOLS

8

3. Spinning
• Regular primary rotation after each batch of requests.
• Clients send requests to all replicas.
• If a non-primary replica does not receive an ordering message

within a timeout (𝑆𝑡𝑖𝑚𝑒𝑜𝑢𝑡):
• Primary is blacklisted.
• A new primary is automatically selected.
• Timeout doubles on each failure.

Weakness of Spinning
• Malicious primary delays ordering messages just under

𝑆𝑡𝑖𝑚𝑒𝑜𝑢𝑡
• This prevents immediate detection while drastically

reducing throughput.

Client 1

Primary

Req 1

Replica 1 Replica 3Replica 2

Client 2

Under static load, throughput can degrade to 99%
Under dynamic load, throughput can degrade to 95.5%

Req 2

𝑆𝑡𝑖𝑚𝑒𝑜𝑢𝑡

Analysis Summary

9

Protocol Primary Rotation Attack Strategy Max Performance Drop

Prime Replaces slow primary Increases RTT to allow
delays 78%

Aardvark Periodic primary change Delays requests under
low load 87%

Spinning Changes primary every
batch Delays just under timeout 99%

RBFT – Overview

10

✓ Requires 3f + 1 nodes.
✓ Each node runs f + 1 protocol instances in parallel and must receive the same client requests.
✓ The protocol follows a 3-phase commit protocol, similar to PBFT.
✓ If 2f + 1 nodes detect the master instance is underperforming, a new primary is elected.
✓ A node forwards requests to all other nodes instead of processing them directly.
✓ When a node receives 2f + 1 copies of a request, it forwards it to its local instances.

Client 1

Node 0 Node 1 Node 2 Node 3

Primary Replica Replica Replica

Replica Primary Replica Replica

Master instance
Orders requests that are
actually executed.

Backup instances
Only order requests to
monitor the master instance.

Monitoring module tracks throughput of all instances

RBFT - Detailed Protocol Step

11

Client

node 0

node 1

node 2

node 3

Request Propagate Pre-prepare Prepare Commit Reply

Redundant agreement performed
by the replicas

Req
msg

➢ REQUEST message containing:
Operation (o), Req ID (rid), Client ID (c)

➢ Signed & authenticated using:
Digital signature and MAC

➢ Nodes: check the MAC & signature.

➢ If a node receives f+1 propagate messages, it
considers the request ready for ordering.

➢Prevents a malicious primary from
manipulating request flow.

Propagate
msg

➢Primary sends a PRE-PREPARE message
contains: View number (v), Sequence number
(n), Client request ID (rid), Request digest (d)

Pre-prepare
msg

➢Replicas verify the message and send a
PREPARE message to all replicas

prepare
msg

commit
msg

Reply
msg

RBFT - Detailed Protocol Step

12

Client

node 0

node 1

node 2

node 3

Request Propagate Pre-prepare Prepare Commit Reply

Redundant agreement performed
by the replicas

Req
msg

Propagate
msg

Pre-prepare
msg

prepare
msg

➢When a replica receives 2f matching
PREPARE messages, it sends a COMMIT
message.

➢When 2f+1 COMMIT messages are received
→ Request is finalized and ordered.

commit
msg

Reply
msg

➢Once the request is ordered, it is executed by
the master instance.

➢Each node sends a REPLY message to the
client.

➢The client accepts the result only if it
receives f+1 matching REPLY messages from
different nodes.

RBFT - Monitoring mechanism & instance change mechanism

13

Trigger primary change :

❖ Throughput
❖ Latency Check (Λ max latency)
❖ Variation Check (Ω threshold)

𝐭𝐦𝐚𝐬𝐭𝐞𝐫 / 𝐭𝐛𝐚𝐜𝐤𝐮𝐩 < Δt
Monitoring module

Throughput Latency Variation

Fairness

Instance change mechanism:

❖ Primary suspect as malicious: send change message
❖ New primary selected
❖ Instance change triggered

Implementation

14

➢ Implemented in C++, based on the Aardvark BFT protocol.

➢ Uses separate Network Interface Controllers (NICs) for:
➢ Isolating client traffic from replica communication.
➢ Mitigating flooding attacks by closing a faulty node's NIC temporarily.

➢ Communication between replicas is via TCP.

➢ Also implemented a UDP version of RBFT for comparison.

Implementation

15

1. Client sends request via client NIC.
2. Verification module validates the request.
3. Propagation module sends the request to other nodes and waits for f+1 copies.
4. Once f+1 are received, request is sent to Dispatch & Monitoring.
5. Dispatch & Monitoring forwards to local replicas (e.g., p₀,₀ and p₀,₁).
6. Replicas coordinate with their instance peers on other nodes to order the request.
7. Ordered requests return to Dispatch & Monitoring.
8. Requests from master instance are passed to Execution.
9. Execution runs the request and sends the reply to the client.

Clients NIC
Verification

Propagation

Dispatch &
Monitoring

Execution

p₀,₀

Node 1

p₀,₁

Node 2

Node 3

NIC

NIC

NIC

Node 0

Experimental Settings

16

❖ Experiments run with up to 2 Byzantine faults (f ≤ 2)

❖ Unless specified, default configuration is f = 1

❖ Two workload modes tested:
❖ Static Load: clients send requests at a constant rate (saturated system)
❖ Dynamic Load: varying client count to simulate spikes

❖ Clients operate in open-loop mode

Performance Evaluation

17

Spinning vs others
➢ Spinning outperforms other protocols for both requests of 8B

and 4KB since it only uses MAC, while others use signatures in
addition to MAC

➢ Spinning has low latency since it uses UDP for communication
between replicas and between replicas and clients

RBFT vs Aardvark
RBFT outperforms Aardvark and this may seem surprising as they
both use the same code base the reason for that is that RBFT
doesn’t perform view changes

Prime vs others
Its high latency is due to the fact that it solely relies on signatures

TCP vs UDP RBFT
The throughput is the same, but TCP has more latency due to
mechanisms it use (ack, flw ctrl, ..)

Performance Evaluation - Worst-Attack-1

18

❖ f faulty nodes are present.
❖ All clients are faulty.
❖ The primary of the master protocol instance is correct and

runs on a correct node p.

Attack Strategy:
➢ Targeted Client Traffic
➢ Flooding with Invalid PROPAGATE Messages
➢ Replica-Level Flooding
➢ Protocol Sabotage

Performance Evaluation - Worst-Attack-1

19

❖ Consistent Throughput Across Nodes
❖ Master vs Backup Comparison
❖ RBFT Monitoring Mechanism

Performance Evaluation - Worst-Attack-2

20

❖ f faulty nodes and all clients are faulty
❖ The primary of the master protocol instance is faulty and

runs on a faulty node
❖ The goal is to make the master appear normal by disrupting

backup instances

Attack Strategy:
➢ Targeted Client Traffic
➢ Flooding with Invalid PROPAGATE Messages
➢ Replica-Level Flooding

Performance Evaluation - Worst-Attack-2

21

❖ Consistent Throughput Across Nodes
❖ Master vs Backup Protocol Instances
❖ RBFT’s Robustness

Performance Evaluation - Unfair Primary Attack

22

❖ The primary of the master protocol instance is malicious,
attempting to delay one client's requests

❖ Λ (Lambda): Maximum acceptable latency per request = 1.5 ms
❖ Ω (Omega): Maximum acceptable difference between the

average latency of a client on different protocol instances

RBFT Response:
➢ Monitoring detects latency violation (Λ exceeded)
➢ Nodes initiate a Protocol Instance Change
➢ The malicious primary is evicted
➢ A correct replica takes over as the new primary

➢ Restores fairness → both clients receive consistent,
➢ low-latency responses

Critical Analysis

23

Pros
 Throughput monitoring ensures that performance remains stable, even under attack.

Only 3% degradation under fault !
 Latency tracking prevents unfair request ordering, ensuring fairness for all clients.
 Multiple protocol instances prevent a single primary from controlling the system.

Cons
Limitation – Open-Loop System Focus

 No proposed solution for adapting to closed-loop systems.
 State synchronization to avoid excessive delays.

Over-Reliance on Performance Monitoring
 Fixed detection thresholds (Δ, Λ, Ω) may not adapt well to network variations.

 Reputation-based primary selection based on historical performance.

High Overhead – Running Multiple Instances
 Running f+1 instances per node increases CPU & memory usage. No cost analysis provided in the paper.

 Resource utilization analysis (energy, memory, CPU impact).
 Adaptive instance management to scale instances dynamically

Conclusion

24

Existing BFT Protocols Lack Robustness:
State-of-the-art BFT protocols can suffer severe performance degradation under malicious primaries.

RBFT: A New Approach to Robustness:
Introduces Redundant Byzantine Fault Tolerance by running multiple BFT instances in parallel.
Uses monitoring mechanisms to detect underperforming or malicious primaries.

Resilience Without Compromising Performance:
Fault-free performance of RBFT is on par with leading robust BFT protocols.
In the worst-case scenario, RBFT limits throughput degradation to ≤3%, even with colluding malicious
clients and nodes.

Scales Better with Fault Tolerance:
Performance impact is smaller with f = 2 than with f = 1

Thank you

25

	Slide 1: Redundant Byzantine Fault Tolerance - RBFT
	Slide 2: Agenda
	Slide 3: Background and Motivation
	Slide 4: Background and Motivation
	Slide 5: System Model
	Slide 6: ANALYSIS OF EXISTING ROBUST BFT PROTOCOLS
	Slide 7: ANALYSIS OF EXISTING ROBUST BFT PROTOCOLS
	Slide 8: ANALYSIS OF EXISTING ROBUST BFT PROTOCOLS
	Slide 9: Analysis Summary
	Slide 10: RBFT – Overview
	Slide 11: RBFT - Detailed Protocol Step
	Slide 12: RBFT - Detailed Protocol Step
	Slide 13: RBFT - Monitoring mechanism & instance change mechanism
	Slide 14: Implementation
	Slide 15: Implementation
	Slide 16: Experimental Settings
	Slide 17: Performance Evaluation
	Slide 18: Performance Evaluation - Worst-Attack-1
	Slide 19: Performance Evaluation - Worst-Attack-1
	Slide 20: Performance Evaluation - Worst-Attack-2
	Slide 21: Performance Evaluation - Worst-Attack-2
	Slide 22: Performance Evaluation - Unfair Primary Attack
	Slide 23: Critical Analysis
	Slide 24: Conclusion
	Slide 25: Thank you

