
Basil: Breaking up
BFT with ACID
(transactions)
Florian Suri-Payer,
Matthew Burke, Zheng
Wang, Yunhao Zhang,
Lorenzo Alvisi, Natacha
Crooks

Harshilsinh

Solanki(40298679)

Date:02/04/2025

Agenda
• Background and Motivation

• Basil Overview

• System Overview

• Overview of Workflow

• Execution Phase

• Prepare Phase(Stage 1 & Stage 2)

• Writeback Phase

• Transaction Recovery: Fallback Scenario

• Evaluation

• Critical Analysis

• Conclusion

Background & Motivation
• Existing BFT System are rely on totally ordered logs and sharded architectures, which impact the on

throughput , latency and transaction flexibility.

• Bottleneck situation Existing system are having (single point failure)(processing all request sequentially

can become bottleneck)

• Although some BFT Use sharding for parallel transaction. But transaction that access in disjoint shared

can execute concurrently , but in operation within shared are still ordered.

• Drawback of existing architecture:

• They pay performance penalty of redundant coordination(for committing in ds, totally order in shared

operation)

• Fairness issues with leader based sharding

• Limited Transaction Expressiveness(read/ write)

How Basil Overcome this Issues?
• Basil, a serializable BFT key-value store that implement the abstraction of a trusted shared log, Novel design address

each of the drawback of traditional BFT systems:

• It borrows databases ability to leverage concurrency control to support highly concurrent but serializable

transactions, thereby adding parallelism to the log.

• It sidesteps concerns about the fairness of leaderbased systems by giving clients the responsibility of driving the

execution of their own transactions.

• it eliminates redundant coordination by integrating distributed commit with replication. (Merging the commit &

replication) so that, in the absence of faults and contention, transactions can return to clients in a single round

trip.

• It improves the programming API, offering support for general interactive transactions that do not require a-

priori knowledge of reads and writes.

Basil - Overview
• Basil Introduced the Two complementary notions of correctness.

• Byzantine Isolation – Ensures correct clients observe only valid database states produced by other correct

clients.

• Byzantine Independence – Prevents Byzantine actors from controlling transaction outcomes.

• Independent Operability – Enforces correctness on a per-client and per-transaction basis, avoiding pessimistic

locks.

• Optimistic Concurrency Control (OCC) – Enhances parallelism while mitigating Byzantine interference.

• Multiversioned Timestamp Ordering (MVTSO) Variant – Reduces transaction abort rates while preventing

Byzantine disruptions.

• Novel Fallback Mechanism – Allows clients to complete pending transactions without blocking non-conflicting

operations.

System Properties of BASIL

• Byzantine Serializability is a way to ensure that, even if some users (called Byzantine clients) act in bad or

unpredictable ways (e.g., lying, cheating, or sending incorrect data), the rest of the system still behaves in a reliable

and consistent manner for honest users.

• But Still Byz-serializable system could still allow Byzantine actors to systematically abort all transactions. Hence, by

defining the notion of Byzantine independence, a general system property that bounds the influence of Byzantine

participants on the outcomes of correct clients’ operations.

• Byzantine Independence: Basil ensures that bad or malicious clients (Byzantine actors) cannot control or block the

actions of honest clients.

• Basil ensures that honest clients can still perform their operations even if some clients are trying to cause problems,

as long as not everyone is working against them. This is a key advantage over leader-based systems, where bad

actors can easily team up to block honest users.

System Overview
• BASIL transaction processing consists of three phases:

• Execution Phase: Clients execute transactional

operations. Reads are sent to remote replicas, while writes

are buffered locally. The system supports interactive and

cross-shard transactions, allowing dynamic queries

across multiple shards.

• Prepare Phase: Each shard votes on whether

committing the transaction maintains serializability.

Replicas within a shard can process votes out of order for

performance optimization.

• Writeback Phase: The client aggregates shard votes,

determines the final transaction outcome (commit or

abort), notifies the application, and asynchronously

updates replicas. This ensures transaction decisions

remain valid even under Byzantine or benign failures.

Overview of Workflow

Execution

Phase

Execution

Phase

Execution

Phase

Prepare Phase

• (Stage 1) Aggregating votes for the final decision

• Client aggregates votes for the transaction T

• Based on voting results, determines one of

• 1).Commit-Fast 2).Abort-Fast 3). Commit-Slow 4)). Abort-slow

• (Stage 2) Making decision durable(only for Slow-path)

• Ensure client’s final decision durable across failures.

Prepare

Phase

(Stage 1)

Client’s Final Decision
• Based on the aggregated vote results of ST1R

Decision Condition Result Output

Commit-Fast 5f+1 Commit votes Proceed to Writeback

V-CERT : <idT, S,

Commit, {ST1R}> // fast

shard, durable

Abort-Fast 3f+1 ≤ Abort votes Proceed to Writeback

V-CERT : <idT, S, Abort,

{ST1R}> // fast shard,

durable

Commit-Slow
3f+1 ≤ Commit votes <

5f+1
Proceed to Stage 2

Vote tally : <idT, S,

Commit, {ST1R}> //

slow shard, not durable

Abort-Slow f+1 ≤ Abort votes < 3f+1 Proceed to Stage 2

Vote tally : <idT, S,

Abort, {ST1R}> // slow

shard, not durable

Prepare

Phase (Stage

2)

Making

Decision

Durable

Writeback

Phase

Transaction Recovery: Fallback Scenario

• In the BASIL protocol, the fallback scenario is triggered when Byzantine nodes cause a stall in the transaction

commit process. This happens due to equivocation, conflicting votes, or quorum failures.

• To recover, BASIL initiates a fallback mechanism with the following steps:

1. Recovery Prepare (RP & RPR): Nodes exchange their latest transaction states.

2. Invoke Fallback (InvokeFB): If inconsistency is detected, a fallback process is initiated.

3. Elect Fallback Leader (ElectFB): A correct leader is elected based on majority agreement.

4. Decision Fallback (DecFB): The leader makes the final decision to commit or abort.

5. Writeback: The decision is propagated to all nodes, ensuring system consistency.

• There will be a two cases in which Recovery can be made:

• Common case: matching results; Commit Quorum (3f+1) or Abort Quorum(f+1)

• Divergent case: unmatching results; Commit Quorum (3f+1) and Abort Quorum(f+1)

Transaction Recovery: Fallback Scenario

Evaluation

• Baselines

• TAPIR(SOSP’15); non-byzantine distributed database

• TxHotStuff (PODC’19), TxBFT-SMaRt (DSN’14) ; tailored for optimistic tx

• Experimental Setup:

• CloudLab , m510 machines (8-core 2.0 GHz CPU, 64 GB RAM, 10 GB NIC, 0.15ms ping latency), run

experiments for 90 seconds (30s warmup/cool-down)

• Client execute in a closed-loop, reissuing aborted transaction using a standard exponential backoff

• F=1 (n= 2f+1 for TAPIR, 3f+1 for HotStuff and BFT-SMaRt)

• Experiments:

• Performance (bench: TPC-C, Smallbank, Retwis)

• BFT overhead (Bench: YCSB-T)

• Basil under (Client) Failure

Evaluation: Baseline Comparisons

Evaluation: Overhead

Evaluation: Basil Optimization

Evaluation: Basil Under Failures

Critical Analysis
• Strong Points;

• Ensures serializability of transactions while maintaining transaction independence, even in environments with

contention and Byzantine failures. This ensures correctness and consistency without compromising

performance.

• Combines 2PC with consensus for faster decision-making (96% of transactions commit/abort in one round-trip).

• Extensive benchmarking with TPC-C, Smallbank, and Retwis, showing robust performance across different

workloads.

• Weak Point:

• While Basil improves throughput with its fast path, the overhead associated with signature verification during

transactions could still be a bottleneck in high-traffic environments, particularly when handling large-scale

transactions with frequent cryptographic operations.

• The paper doesn’t provide much insight into how long-running transactions (those that span multiple rounds or

involve complex operations) are handled. These could present performance challenges, especially in real-world

systems where transactions often need more than just basic read-write operations.F=1 (n= 2f+1 for TAPIR, 3f+1

for HotStuff and BFT-SMaRt)

Conclusion

• This paper presents Basil, the first leaderless BFT transactional key-value store supporting ACID transactions.

• Basil offers the abstraction of a totally-ordered ledger while supporting highly concurrent transaction processing and

ensuring Byz-serializability.

• Basil clients make progress independently, while Byzantine Independence limits the influence of Byzantine

participants.

• During fault and contention-free executions Basil commits transactions in a single round-trip.

Thank you

