
ResilientDB — Global Scale
Resilient Blockchain Fabric
Presented by Timothee Duthoit [40120801]

Table of Contents

2

1. Background and Motivations

2. Design of GeoBFT

3. Operation of GeoBFT

4. Failure Handling in GeoBFT

5. GeoBFT Implementation in ResilientDB

6. Performance Evaluation

7. Critical Analysis

8. Summary and Conclusion

Background and Motivations

Issues with current applications

● Blockchain applications rely on Byzantine Fault-Tolerant (BFT) consensus
● Current BFT protocols have high latency and communication costs when nodes are

spread across large areas
● For centralized decision making, the bandwidth of the primary tends to be a

bottleneck
● Global scale blockchain applications could benefit from a topology-aware system

which optimizes global consensus

3

Real World Cluster-to-Cluster Communication Costs

4

Benefits of Topology-Aware Consensus

5

Group nearby nodes/replicas into clusters

Minimize communication between distant
nodes

Allow parallel consensus execution

Minimize required coordination between
clusters

Design of GeoBFT

6

Main Components of GeoBFT’s Design

● Aware of the network topology
● Nearby replicas are grouped together into clusters
● Makes use of rounds in which clusters commit one transaction each
● Each cluster achieves consensus independently using PBFT
● A novel global sharing protocol for inter-cluster communication
● Clusters share commit certificates with each other
● A novel remote view change protocol is used to handle failures
● Guarantees safety and liveness

7

GeoBFT — Relation
Between Clusters,
Replicas and Failures

8

For z clusters of n replicas each and at most
f failing replicas in each cluster we have:

● Number of reliable replicas per
cluster = n – f

● Each cluster must have n > 3f
or n ≥ 3f + 1

● Maximum number of failures
tolerated is fz with no more than f
failures in each cluster

Example: For 3 clusters, z = 3, of 4 replicas
each n = 4 → f = 1 and the total number of
failures is fz = 3

Network Overview

1. Client sends Transaction T1 to the
nearest cluster’s Primary PC1

2. PC1 sends PREPREPARE message
to all the replicas in the cluster

3. The cluster achieves local
consensus using PBFT

4. PC1 sends T1 along with its commit
certificate to other clusters

5. PC1 receives transactions with
commit certificates from other
clusters and broadcasts them

6. Replicas in all clusters
execute/commit the transactions

7. All replicas inform their local clients
of the executed transactions

GeoBFT — Normal Case Scenario

9

GeoBFT — Local PBFT Consensus

10

PC1 send the transaction along with its commit
certificate to PC2 and f other replicas in C2 .

So each primary sends f + 1 messages.

Sending f + 1 messages allows the protocol to
handle primary failures from the other end.

Global Sharing Protocol — Sending

11

Global Sharing Protocol — Remote View Change

In the event where a primary fails, other
clusters won’t receive the transaction and
certificate from C1 for round ρ.

Using a timer, nodes from other clusters
detect failure and initiate a view change
to replace C1’s primary.

At most one view change can happen per
round.

12

Global Sharing Protocol — Remote View Change

13

Implementation of GeoBFT
in ResilientDB

14

Architecture of ResilientDB Fabric

15

ResilientDB Fabric — The Ledger

16

➔ The ledger is an immutable, append-only blockchain.

➔ The ledger records the ordered sequence of accepted client requests.

➔ Each block represents a single executed client request.

➔ In each round, for z clusters, every replica executes z requests adding z blocks.

➔ The z requests added each belong to a different cluster Ci (1 ≤ i ≤ z).

ResilientDB Fabric — Cryptography

17

➔ ResilientDB uses strong cryptographic primitives to ensure secure communication and

integrity.

➔ It follows NIST recommendations for security standards.

➔ Key cryptographic mechanisms used

◆ ED25519-based digital signatures for signing messages.

◆ AES-CMAC for authenticated communication.

◆ SHA256 for generating collision-resistant message digests.

ResilientDB Fabric — Pipelined Consensus

18

ResilientDB uses a multi-threaded pipelined architecture to optimize performance.

ResilientDB Fabric — Request Batching

19

➔ Request batching helps optimize consensus performance by grouping multiple client requests into

a single batch.

➔ Clients can:

◆ Send batches of requests to their local cluster.

◆ Local primaries can aggregate multiple client requests into a single batch.

➔ Consensus processing optimizations:

◆ Instead of handling each request individually, GeoBFT processes a batch as a single request.

◆ This reduces the overhead and shares consensus costs among multiple requests.

Multithreaded Implementation of GeoBFT

20

Implementation for local primaries Implementation for other replicas

Evaluation of GeoBFT

21

Impact of the Number of Clusters

22

Increasing the number of

clusters improves GeoBFT’s

throughput significantly.

GeoBFT scales rather well with

more clusters, while its parallel

consensus execution reduces

bottlenecks.

Impact of the Number of Replicas per Cluster

23

Increasing the number replicas

per cluster decreases GeoBFT’s

throughput significantly.

GeoBFT is sensitive to the

cluster size. Adding too many

replicas per cluster recreates

the same issues as PBFT. The

bandwidth of the primary

becomes the bottleneck

Impact of Failures

24
GeoBFT is resilient to moderate failures but supports fewer failures than other BFT protocols with the same number of replicas.

Impact of Increasing Batch Size

25

Larger batch sizes result in a larger

throughput a certain point.

The appropriate batch size can be

selected depending on the desired

efficiency vs throughput/latency

tradeoffs the user is willing to

make.

Critical Analysis — Strong Points

➔ Outperforms all other protocols on a global scale.

➔ Decentralized → Global consensus shared between primaries.

➔ Easy to scale → New replicas are added to an existing/new cluster.

➔ Reduced global communication overhead.

26

Critical Analysis — Weak Points

➔ GeoBFT supports fewer failures than other protocols with the same

number of replicas.

➔ More complex → GeoBFT requires the implementation of a global

communication protocol.

➔ Sensitive to cluster size → Throughput decreases as the number of

replicas per cluster increases.

27

Summary

GeoBFT is a scalable, cluster-based Byzantine Fault Tolerant (BFT) consensus
protocol designed for geo-distributed blockchains. It improves efficiency,
scalability, and resilience over traditional BFT protocols by:

● Grouping replicas into clusters to minimize global communication.
● Introducing an optimistic global sharing protocol to reduce overhead.
● Adding a remote view-change mechanism to ensure fault tolerance.

28

Thank you!
Any questions?

29

References

Information and figures taken from

S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi, “ResilientDB: Global scale
resilient blockchain fabric,” Proc. VLDB Endow., vol. 13, no. 6, pp. 868–883, Feb.
2020, doi: 10.14778/3380750.3380757.

30

