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Background and Motivations

Issues with current applications

● Blockchain applications rely on Byzantine Fault-Tolerant (BFT) consensus
● Current BFT protocols have high latency and communication costs when nodes are 

spread across large areas
● For centralized decision making, the bandwidth of the primary tends to be a 

bottleneck
● Global scale blockchain applications could benefit from a topology-aware system 

which optimizes global consensus
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Real World Cluster-to-Cluster Communication Costs
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Benefits of Topology-Aware Consensus
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Group nearby nodes/replicas into clusters

Minimize communication between distant 
nodes

Allow parallel consensus execution

Minimize required coordination between 
clusters



Design of GeoBFT
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Main Components of GeoBFT’s Design

● Aware of the network topology
● Nearby replicas are grouped together into clusters
● Makes use of rounds in which clusters commit one transaction each
● Each cluster achieves consensus independently using PBFT
● A novel global sharing protocol for inter-cluster communication
● Clusters share commit certificates with each other
● A novel remote view change protocol is used to handle failures
● Guarantees safety and liveness

7



GeoBFT — Relation 
Between Clusters, 
Replicas and Failures
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For z clusters of n replicas each and at most 
f failing replicas in each cluster we have:

● Number of reliable replicas per 
cluster = n – f

● Each cluster must have n > 3f
or n ≥ 3f + 1

● Maximum number of failures 
tolerated is fz with no more than f 
failures in each cluster

Example: For 3 clusters, z = 3, of 4 replicas 
each n = 4 → f = 1 and the total number of 
failures is fz = 3

Network Overview



1. Client sends Transaction T1 to the 
nearest cluster’s Primary PC1

2. PC1 sends PREPREPARE message 
to all the replicas in the cluster

3. The cluster achieves local 
consensus using PBFT

4. PC1 sends T1 along with its commit 
certificate to other clusters

5. PC1 receives transactions with 
commit certificates from other 
clusters and broadcasts them

6. Replicas in all clusters 
execute/commit the transactions

7. All replicas inform their local clients 
of the executed transactions

GeoBFT — Normal Case Scenario
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GeoBFT — Local PBFT Consensus
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PC1 send the transaction along with its commit 
certificate to PC2 and f other replicas in C2 .

So each primary sends f + 1 messages. 

Sending f + 1 messages allows the protocol to 
handle primary failures from the other end.

Global Sharing Protocol — Sending
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Global Sharing Protocol — Remote View Change

In the event where a primary fails, other 
clusters won’t receive the transaction and 
certificate from C1 for round ρ.

Using a timer, nodes from other clusters 
detect failure and initiate a view change 
to replace C1’s primary.

At most one view change can happen per 
round.
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Global Sharing Protocol — Remote View Change
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Implementation of GeoBFT 
in ResilientDB
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Architecture of ResilientDB Fabric
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ResilientDB Fabric — The Ledger
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➔ The ledger is an immutable, append-only blockchain.

➔ The ledger records the ordered sequence of accepted client requests.

➔ Each block represents a single executed client request.

➔ In each round, for z clusters, every replica executes z requests adding z blocks.

➔ The z requests added each belong to a different cluster  Ci (1 ≤ i ≤ z).



ResilientDB Fabric — Cryptography
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➔ ResilientDB uses strong cryptographic primitives to ensure secure communication and 

integrity.

➔ It follows NIST recommendations for security standards.

➔ Key cryptographic mechanisms used

◆ ED25519-based digital signatures for signing messages.

◆ AES-CMAC for authenticated communication.

◆ SHA256 for generating collision-resistant message digests.



ResilientDB Fabric — Pipelined Consensus
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ResilientDB uses a multi-threaded pipelined architecture to optimize performance.



ResilientDB Fabric — Request Batching
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➔ Request batching helps optimize consensus performance by grouping multiple client requests into 

a single batch.

➔ Clients can:

◆ Send batches of requests to their local cluster.

◆ Local primaries can aggregate multiple client requests into a single batch.

➔ Consensus processing optimizations:

◆ Instead of handling each request individually, GeoBFT processes a batch as a single request.

◆ This reduces the overhead and shares consensus costs among multiple requests.



Multithreaded Implementation of GeoBFT
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Implementation for local primaries Implementation for other replicas



Evaluation of GeoBFT
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Impact of the Number of Clusters
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Increasing the number of 

clusters improves GeoBFT’s 

throughput significantly.

GeoBFT scales rather well with 

more clusters, while its parallel 

consensus execution reduces 

bottlenecks.



Impact of the Number of Replicas per Cluster
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Increasing the number replicas 

per cluster decreases GeoBFT’s 

throughput significantly.

GeoBFT is sensitive to the 

cluster size. Adding too many 

replicas per cluster recreates 

the same issues as PBFT. The 

bandwidth of the primary 

becomes the bottleneck



Impact of Failures
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GeoBFT is resilient to moderate failures but supports fewer failures than other BFT protocols with the same number of replicas.



Impact of Increasing Batch Size
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Larger batch sizes result in a larger 

throughput a certain point.

The appropriate batch size can be 

selected depending on the desired 

efficiency vs throughput/latency 

tradeoffs the user is willing to 

make.



Critical Analysis — Strong Points

➔ Outperforms all other protocols on a global scale.

➔ Decentralized → Global consensus shared between primaries.

➔ Easy to scale → New replicas are added to an existing/new cluster.

➔ Reduced global communication overhead.
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Critical Analysis — Weak Points

➔ GeoBFT supports fewer failures than other protocols with the same 

number of replicas.

➔ More complex → GeoBFT requires the implementation of a global 

communication protocol.

➔ Sensitive to cluster size → Throughput decreases as the number of 

replicas per cluster increases.
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Summary

GeoBFT is a scalable, cluster-based Byzantine Fault Tolerant (BFT) consensus 
protocol designed for geo-distributed blockchains. It improves efficiency, 
scalability, and resilience over traditional BFT protocols by:

● Grouping replicas into clusters to minimize global communication.
● Introducing an optimistic global sharing protocol to reduce overhead.
● Adding a remote view-change mechanism to ensure fault tolerance.
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Thank you!
Any questions?
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